Dr Paul Rogers 29 September 2024

An introduction to heat pumps

361 Energy Fair

Presentation overview

- Heat pumps
 - How they work
 - Types of heat pumps
- Examples from project with North Devon Homes
 - Heat pumps with battery storage and solar PV
 - Heat pumps with time of use tariffs

How a heat pump works

Jargon Buster

- Coefficient of Performance
 - A measure of the efficiency of the heat pump
 - = Heat output / electrical input
 - ASHP: 1kW of electricity provides about 3kW of heat
- Flow temperature
 - Temperature of the heating fluid in the supply (flow) pipe going into the heat emitters

How flow temperature affects the COP

Flow temperatures for different heat emitters

Single or double panel $60 - 80^{\circ}C$

Oversized or triple panel 35 - 55 °C

Underfloor heating 30 - 35°C

Heating schedules

Types of heat pumps

- Air to water source heat pump (ASHP)
 - Has outdoor unit with fan and heat transferred to radiators
 - High temperature heat pumps can operate with higher flow temperatures
- Air to air source heat pump
 - Has outdoor unit with fan and heat provided through hot air
- Hybrid heat pump
 - Has outdoor unit for ASHP and combines with a gas boiler
- Ground source heat pump
 - Heat collected from ground via a borehole or coils of pipe in a long trench

Electricity tariffs for heat pumps

- North Devon Homes project
 - Trial funded by Energy Industry
 Voluntary Redress Scheme
 - Installations in Witheridge
 - Off gas with storage heaters
 - Economy 7 tariffs
- Installations
 - Wet central heating system
 - Air source heat pump
 - Electrical battery & heat battery

- Boxergy installations
 - 5 x semi-detached bungalows
 - 2 x mid-terraced houses
 - Electrical battery
 - 2 x 5.7kWh or 1 x 10.4kWh
 - Heat battery
 - Either 9.5kWh or 12.6kWh
 - Battery charged overnight on Economy 7 to help power home during the peak rate period

Household B-02 on Economy 7 on 12 Jan 2023 – used 21.6kWh

Household B-02 on Cosy Octopus on 1 Mar 2023 – used 27.6kWh

Majority of grid consumption off-peak

Phase 2 project - Solar PV with Electric Heating

- Solar PV installed on 18 properties
 with electric heating
- Included 7 properties with Boxergy
- Boxergy PV systems
 - 5.8kW or 5.67kW
 - Orientation south or east/west

Solar PV with Electric Heating

Household B-02 on Cosy Octopus on 10 Mar 2024 – used 15.6kWh

PV generation = 19kWh

Household consumption = 21.1kWh

Solar PV with Electric Heating

- Household B-02 on Cosy Octopus from 13 Feb 2023
- Solar PV system fitted on 22 Aug 2023

Start date	End date		Standard rate consumption (kWh)	Peak rate consumption (kWh)
22 Feb 23	21 Feb 24	5373.1	590	40.9
		89.5%	9.8%	0.7%

^{*} Note missing data from 11 Oct 23 to 17 Oct 23

Solar PV with Electric Heating

■ Household B-02 – impact of solar PV

- Saving from solar PV from 1 Sep 23 to 31 Aug 24 = 2763kWh
- 42% reduction in grid consumption

NEA report on ASHPs with battery storage

Making heat cheaper, smarter and greener

Resources

Making heat cheaper, smarter and greener

Paul Rogers

Senior Innovation and Technical Evaluation Co-ordinator

C 07921 451643

paul.rogers@nea.org.uk

Innovation and Technical Evaluation, Homes

https://www.nea.org.uk/publications/making-heat-cheaper-smarter-and-greener/

Contact:

paul.rogers@nea.org.uk

paul@361energy.org

Thank you for listening

Any questions?

Visit www.nea.org.uk

National Energy Action is an independent charity Registration No. 290511

National Energy Action (NEA)